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Supporting Informaition

Supporting Video

Video S1. The supercapacitor textile was used to lighten up a red light emission
diode.

Experimental section

CNT arrays were synthesized by chemical vapor deposition in a tube furnace.
Ethylene served as carbon source with a flowing rate of 90 sccm. A mixture of Hz (30
sccm) and Ar (400 sccm) were used as carrying gas. The catalyst was composed of Fe
(1.2 nm)/Al203 (3 nm) on silicon wafer. The reaction was carried out at 740 <C for 10
min.

Figure S1. a, b. SEM images of a CNT fiber at low and high magnifications,
respectively.
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Figure S2. High resolution transmission electron microscopy image of a CNT with a
multi-walled structure.
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Figure S3. Photograph of a CNT fiber being made into a knot.
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Figure S4. Experiment setup for the synthesis of CNT/PAN composite fiber-based
textile through electrochemical polymerization.
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Figure S5. SEM image of an aligned CNT/PANI composite with PANI weight
percentage of 60%.
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Figure S6. Raman spectra of bare CNT fiber-based textile and CNT/PANI composite
fiber-based textiles with different PANI weight percentages.
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Figure S7. Fourier transform infrared spectra of CNT, PANI and CNT/PANI
composite.
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Figure S8. Dependence of specific capacitance of bare CNT fiber-based textile on
cycle number at current density of 1 Ag™.

S8



B (o)} Qo
o o o
1 N 1 1 L

Transmittance (%)

N
o
1 "

400 500 600 700 800
Wavelength (nm)

Figure S9. UV-vis spectrum of the supercapacitor textile.
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Figure S10. Galvanostatic charge/discharge curves of three supercapacitors being
connected in series (a) and parallel (b). The inserted image at a showed a red light
emitting diode being powered by the supercapacitor. A single supercapacitor is shown
for a comparison under the same condition.
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Figure S11. J-V curve of the PC part based on the liquid electrolyte.
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Figure S12. Photograph of liquid (left) and gel (right) electrolytes used in the PC part.
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Figure S13. J-V curve of the PC part based on the gel electrolyte.
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Figure S14. Typical photocharging and galvanostatic discharging curve for the

integrated energy textile based on the liquid electrolyte and bare aligned CNT

fiber-based textile electrode.
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Figure S15. Typical photocharging and galvanostatic discharging curve for the
integrated energy textile based on the liquid electrolyte and aligned CNT/PANI

composite fiber-based textile electrode.
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